

A COMBINED DTI AND fMRI ANALYSIS OF THE NEURAL CORRELATES 🚺 OF IMPLICIT PROBABILISTIC SEQUENCE LEARNING

Ilana J. Bennett¹, Jessica R. Simon¹, David J. Madden², Chandan J. Vaidya^{1,3}, James H. Howard, Jr.^{1,4,5}, Darlene V. Howard¹

Department of Psychology, Georgetown University; ²Center for the Study of Aging and Human Development, Duke University Medical Center; ³Children's Research Institute, Children's National Medical Center; ⁴Department of Psychology, The Catholic University of America; ⁵Department of Neurology, Georgetown University Medical Center

INTRODUCTION IMPLICIT PROBABILISTIC SEOUENCE

- LEARNING describes non-conscious sensitivity to the frequency of sequential regularities
- For example, responding preferentially to a series of events that occur more frequently than others, without having explicit knowledge of this regularity

GRAY MATTER SUBSTRATES

- · Early, fast learning: Hippocampus, parahippocampal gyrus (e.g., Schendan et al., 2003)
- Late, slow learning: Striatum (caudate, putamen) (e.g., Dovon et al., 1997)
- WHITE MATTER is also important because it connects distributed gray matter regions involved in cognition (Mesulam, 1990)
- Integrity of white matter from underlying brain regions correlates with cognitive performance (e.g., Kennedy & Raz, 2009)

WHITE MATTER INTEGRITY may be an index of neural efficiency (Rypma et al., 2006)

May directly relate to neural activity in gray matter regions it connects

AIMS OF THE PRESENT STUDY

- Is white matter integrity from tracts connecting gray matter substrates of implicit motor probabilistic sequence learning related to non-motor learning?
- Does white matter integrity from these tracts mediate the relationship between functional activity and learning?

METHOD

PARTICIPANTS

- 10 younger adults (18.8 ± 0.6 years; 5 female)
- MRI PROTOCOL
- 3T Siemens Trio
- FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)
- Three T2* sensitive gradient EPI runs per participant Parameters:
- 152 images/run, 42 axial slices, voxel size=4.0 x 4.0 x 3.7 mm, TR/TE=2500/30 ms, 90° flip angle, FOV=256 mm²
- Pre-processing:
- Realignment, spatial normalization to MPRAGE, spatial smoothing (8 mm) in SPM5

DIFFUSION TENSOR IMAGING (DTI)

- Two EPI sequences per participant
- Parameters:
- Diffusion weighted gradients b=0 and b=1000 s/mm² applied in 35 orthogonal directions
- 55 axial interleaved slices, 2.5 mm3 spatial resolution, TR/TE=7700/100 ms, FOV=240 mm²
- Pre-processing:
- Correct eddy current distortion (Eddycorrect), fit diffusion tensors to each voxel (DTIfit), and diffusion parameter estimation (BedpostX) using FSL's Diffusion Toolbox (Behrens, 2003; Smith et al., 2004)

PROBABILISTIC SEQUENCE LEARNING TRIPLETS TASK: Respond only to the Target in 1 of 3 Predictive locations with right hand 2nd order sequence structure - Predictive cue location probabilistically Random predicts Target location

- Random cue occurs at any location

 Triplet (runs of 3 events) probability - High-frequency triplets occurred more often than low-frequency triplets (probability ratio 8:2)

3) voxel-wise

correlations

minus Low

Measures

2 4 6 8

LEARNING MEASURE (Correlation coefficient between tripl frequency and reaction time * (-1) 2.0 .15 OC 10 05 000 Target RUN 1 Response

CORRELATIONS: BOLD ACTIVATION x TRIPLET LEARNING

RUN 1 Negative (Run 1) L and R Hippocampus and positive (Run between BOLD activation from the High Frequency

Frequency GLM contrast and the Triplet Learning (p < .01 uncorrected, k=5)

> ADDITIONAL REGIONS: L parahippocampus, R ventral striatum, L putamen, and bilateral cerebellum

ADDITIONAL REGIONS: Bilateral premotor (BA 6), R parietal (BA 7), bilateral temporal (BA 21/22), bilateral occipital (BA 16/17), and bilateral cerebellum

WHITE MATTER INTEGRITY: TRACTOGRAPHY

FRACTIONAL ANISOTROPY (FA)

- Measure of white matter integrity that indicates directional coherence of water diffusion - Higher values indicating better integrity
- PROBABILISTIC FIBER TRACKING
- Using FSL's ProbtrackX (Behrens et al., 2003)
- Subcortical seed, frontal waypoint, and midline exclusion masks (in green) traced in standard space and registered to each individual's diffusion space
- Threshold tracts at 20% of each individual's maximum connectivity value
- Multiply thresholded tracts by each individual's FA map
- Average the FA values along each tract

IMAGES show tracts common to 90% of participants

HIPPOCAMPUS-FRONTAL

TRACT

CAUDATE-FRONTAL TRACT

RUN 3

 "Executive loop": DLPFC/ posterior parietal \rightarrow caudate \rightarrow GPi/SNr \rightarrow thalamus (Seger, 2006)

CORRELATIONS: WHITE MATTER INTEGRITY x TRIPLET LEARNING

LEARNING	FA
Run 1	L caudate-frontal (r =73, $p < .02$)
	R caudate-frontal (r =85, $p < .01$)
	L hippocampus-frontal (r =67, $p < .04$)
Run 3	R hippocampus-frontal (r = 66 , $p < .04$)

- Better implicit probabilistic sequence learning was associated with lower white matter integrity
- Factors other than myelin (e.g., crossing fibers, axonal diameter) may decrease FA, but not affect tract integrity (Tuch et al., 2005)
- Integrity of other tracts not examined here may positively correlate with this measure of learning

MEDIATION

EARLY LEARNING (RUN 1)

- Negatively correlated with BOLD activity in the striatum and hippocampus (among other regions)
- Negatively correlated with FA in the caudate-frontal and hippocampus-frontal tracts
- LATER LEARNING (RUN 3)
- Positively correlated with BOLD activity in the caudate and dorsolateral prefrontal cortex
- Negatively correlated with FA in the hippocampusfrontal tract

MEDIATION

- Both BOLD activity and FA were significantly related to Triplet learning
- But BOLD activity in the regions assessed here was not related to FA in either tract for any run
- Thus, the requirements for mediation were not met in this relatively small young adult sample (Baron & Kenny, 1986)

SUMMARY AND DISCUSSION

- Integrity of white matter tracts in the medial temporal and fronto-striatal learning systems was significantly associated with implicit non-motor probabilistic sequence learning
- Consistent with functional imaging results using the Triplet task (re-presented here and in Simon, CNS, 2008)
- However, white matter integrity in these tracts was not a significant mediator of learning-related BOLD activity
- Instead, white matter integrity and BOLD activity make separate contributions to learning
- FUTURE RESEARCH should continue to examine:
- The role of white matter integrity as a mediator of BOLD activity-cognitive performance relationships
- Complex structure-function interactions between the
- medial temporal and fronto-striatal learning systems

Cognitive Neuroscience Society + 16th Annual Meeting San Francisco, CA + May 2009 Email: ijb5@georgetown.edu Supported by NIH/NIA Grants R37AG15450 and F31 AG030874-01 and GCRC NIH/NCRR Grant M01 RR023942-01