

Dual task effects on implicit probabilistic sequence learning in young and old adults

Katherine R. Gamble¹, James H. Howard, Jr.^{1,2,3}, Darlene V. Howard¹

¹Department of Psychology, Georgetown University; ²Department of Psychology, The Catholic University of America: ³Department of Neurology, Georgetown University Medical Center

Introduction

- Implicit motor sequence learning occurs when people respond to a series of stimuli, and unknowingly learn a pattern embedded within the stimulus sequence
- · The Alternating Serial Reaction Time (ASRT) task is a measure of sequence learning, modified from the SRT and contains a subtle secondorder regularity (Howard and Howard, 1997)
- · Sequence learning can be assessed continuously, and
- · Recognition measures indicate a lack of explicit knowledge Dual tasks have been used:
- · concurrently with sequence learning to look at the effects of divided attention or at parallel learning, with mixed results showing either impaired learning or no effect (Allen, Baddeley & Hitch, 2006; Deroost, Coomand & Soetens, 2009; Jiménez & Vázquez, 2005; Rowland and Shanks, 2006)
- sequentially with implicit category learning, and show improved learning in young adults (Filoteo, Lauritzen & Maddox, 2010)
- Goal of present study: To determine if a sequentially presented working memory (WM) task affects implicit learning of a probabilistic sequence in young and older adults
- Sequence learning assessed via: ASRT, which requires continuous updating of information during learning
- Dual task: Matrices task from Mitchell, Johnson, Rave & D'Esposito (2000), presented sequentially to tax the frontal lobes in task-switching

Alternating Serial Reaction Time Task

•The ASRT task is a probabilistic 2nd order . sequence learning task (Howard and Howard, 1997) Pattern -•One event predicts the location of the event two trials later, with a randomly determined event Random between them Pattern 3 ·Learning occurs within patterns, such as •000 1r2r3r4r, where triplets of trials would occur Random with High frequency, 1r2, 2r3, 3r4, 4r1, or . 5 ST Low frequency, eg: 1r3 or 2r4 Pattern 2 •50 trials/block, 15 blocks/session, 0000 3 sessions Random •000 Pattern

Matrices Task

Adapted from Mitchell et al. (2000)

•Participants in the dual task condition saw 3 (older adults) or 4 (young adults) matrices, one at a time, for 1500 ms each

•Participants were instructed to "Remember both the letter and the location"

•Memory for the letter and location together were tested - participants responded "yes" if a letter and location were exactly as seen previously, and "no" if otherwise

Young adults Old adults

375 5 350 325 300 275 e2 e5 e6 Epoch

the ASRT

•12 young and 12 old adults

Skill-learning (main effect of epoch, p < .001)

•Sequence learning (main effect of triplet type, p < .001 & triplet type x epoch interaction, p < .001)

•Dual group shows more sequence learning than control group on some epochs (marginal triplet type x epoch x condition interaction, p = .08)

·Sequence learning (main effect of triplet type, p < .001 & triplet type x epoch interaction, p < .001)

•Dual group shows more sequence learning than control group on some epochs (triplet type x epoch x condition interaction, p = .018)

•Skill-learning (main effect of epoch, p < .001) ·Sequence learning (main effect of triplet type, p = .004 & triplet type x epoch interaction, p = .02) •No group differences in sequence learning (triplet type x epoch x condition interaction, p = .52)

·Sequence learning (main effect of triplet type, p < .001)

•No group differences in sequence learning (triplet type x epoch x condition interaction, p = .32)

Matrices Task Test Accuracy

Young adults were more accurate than old (main effect of age, p = .036) Older adults showed more improvement over time (age x epoch

interaction, p < .001)

Test of Implicitness

Sensitive measures of explicit awareness showed Rated that no participants were aware of the sequence they implicitly learned Participants did not rate high probability triplets as having occurred more frequently ň than low probability triplets

Discussion & Implications

- The sequential dual task affected implicit sequence learning in young, but not older adults
 - · A sequential dual task improved learning in young adults compared to those completing the ASRT alone, similar to findings of Filoteo et al.
- · Filoteo et al. suggest that a sequential WM task "removes" the frontal lobes, allowing the procedural-system to control task performance
 - Young adults in our task may similarly have had their frontal lobes behaviorally "removed" in the dual task condition, allowing the striatum to take over and carry out sequence learning
- Older adults did not show group differences in learning, suggesting that the dual task group was not affected by the frontal lobe "removal"
 - · Young and old adults may be using different brain regions for ASRT learning, such that a "removal" of the frontal lobes may not affect learning in old adults, perhaps due to age-related PFC volume decreases

23rd Annual Convention of the American Psychological Association, 2011 Supported by: NIH/NIA Grants RO1AG036863 & R37AG15450 krg27@georgetown.edu

